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Summary. Heritability estimated from sire family vari- 
ance components, ignoring dams, pools conventional 
paternal and maternal half sib estimates, in a way 
which is biased upward, and sub-optimal for minimiz- 
ing the sampling variance. Standard error of a sire 
family estimate will be smaller than that of the equiva- 
lent paternal half sib estimate, but not as small as that 
of an estimate obtained by optimal pooling of paternal 
and maternal half sib estimates. If only additive genetic 
variance components are significant, the bias may be 
removed by use of a computed average genetic rela- 
tionship for sire families, in place of a nominal R = 
0.25. Average genetic relationship may be computed 
from mean and variance of dam family size within sire 
families. If  dominance, epistatic, or maternal compo- 
nents are significant, this simple correction is not ap- 
propriate. In situations likely to be encountered in 
large domestic species such as sheep and cattle (dam 
family size small and uniform) bias will be negligible. 
The method could be useful where cost of dam identi- 
fication is a limiting factor. 
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Introduction 

In species such as sheep and cattle, where the frequen- 
cies of twin and multiple births are low, it has been 
common practice to estimate heritability by the analy- 
sis of variance method, using only between and within 
sire family variance components, and assuming that 
presence of a small number of full sibs in some pater- 
nal half sib families will have a negligible effect on the 
estimations. This approach has advantages of a simpler 

analysis of variance and of enabling data in which the 
dam's identification is unknown to be utilized. 

Some workers (Hazel and Terrill 1945; Rendel 
1956; McGuirk 1973) have considered whether a low 
frequency of full sib groups in their particular data set 
would be likely to bias heritability estimates. Their con- 
clusions were all negative. This paper attempts to out- 
line the general conditions under which sire family 
heritability estimates would be seriously biased by pre- 
sence of full sib progeny. The effect on standard errors 
of estimates is also considered. The results should be of 
interest in experimental design, in the case where cost 
of dam identification is a limiting factor. 

Average genetic relationship within a sire family 

1 One progeny per dam 

If each dam has exactly one offspring, all progeny of a 
sire are half sibs, their average genetic relationship is 
R = 0.25 (Fisher 1918), and heritability in the narrow 
sense (Lush 1940) is estimated as: 

fi2 a2 
R (as 2 + & )  

where b2 and ~.2 are estimates of between and within 
sire family variance components. Most workers proceed 
on this basis, assuming that the occasional dam with 
multiple progeny will not significantly alter R or the 
resultant heritability estimate. 

2 One o1" two progeny per dam 

In the simple case where each dam has either 1 or 2 
progeny, let the N progeny of a sire consist of 

f dam families of size 2 
and (N - 2 f) dam families of size 1. 
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Fig. 1 a, b. Average genetic relationship 
within a sire family when dams have 
either 1 or 2 progeny. Graph (a) - -  
zero single progeny, - - - I  single pro- 
geny, - . . . .  2 single progeny, ' . "  10 
single progeny; Graph (b) - -  zero sets 
of twin progeny, - - - -  one set of twin 
progeny, - . . . .  2 sets of twin progeny, 
. . . .  10 sets of twin progeny 

The average genetic relationship among offspring of  
this sire is then: 

R =  1 N ( N - 1 ) / 2  0"25+ 

( 2 f  ) 
= 14 N ( N - I )  0.25. (1) 

Expression (1) is equivalent to that of  Rendel (1956) 
when dams have either single or twin progeny�9 In this 
case R cannot exceed 0.50, and in most practical cir- 
cumstances would rarely exceed 0.27 (Fig. 1). 

where f. = ~ fr is total number of  dam families and 
r 

e (r) = N/f.  is expected value of  dam family size. With 
some algebra, this rearranges to give 

Var (r) + f (g - 1) 
Q - (3) 

f (N  - 1) 

where Var (r) is variance of  dam family size within sire 
group and ~ is mean dam family size. 

If the distribution of  dam family sizes within sire is 
Poisson, expression (3) simplifies to: 

3 Multiple progeny per dam 

Let the progeny of  one sire have an arbitrary distribu- 
tion of  dam family sizes 

f~ dam families of  size 1 
t"2 dam families of size 2 

fn dam families of  size n n 
and let N = number of  progeny per sire = ~ r fr 

r = l  

The average genetic relationship within this sire family 
will be of  the form 

R = (1 + Q) 0.25 (2) 

where 

number of  full sib pairs of  progeny Q= 
total number  of  pairs of  progeny 

N (N - 1)/2 

] 
[ r = l  r~--I rfr 

N (N - 1)/2 
I ~" f. [e (r z) - e (r)] 

2f.l e (r) [f. e (r) - 1] 

f Q= 
N - I  

Expressions (2) and (3) are equivalent to the seem- 
ingly different formula of  Rendel (1956), but have the 
advantage that individual dam family sizes are not re- 
quired, only an estimate of  their mean and variance, 
which could perhaps come from a subset of  the data, 
or even a separate experiment. 

Figure 2 shows that the average relationship within 
a sire family is appreciably greater than R =  0.25 
whenever the mean (f) or variance (Var(r)) of  dam 
family size is greater than 2. The deviation from R = 
0.25 is also more pronounced when sire family size (N) 
is small. 

Effect of ignoring dam families on analysis of  variance, 
variance components, and heritability estimation 

1 Including dams 

A common procedure is to mate s sires to a random 
sample of  d. dams (di dams for sire i) and obtain n.. 
progeny (nij progeny from jth dam mated to ith sire)�9 If  
data arising from measurement of  these progeny are 
subjected to a 3 level nested analysis of  variance, as 
outlined in Table 1, Kempthorne (1955) shows that 
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Fig. 2 a,b. Average genetic relationship 
within a sire family when dams have 
multiple progeny. Graph (a) N = 20 pro- 
geny per sire; Graph (b) N = 10 progeny 
per sire. Variance of dam family size 
equal to mean dam family size ( ), 
zero ( - - - - ) ,  2 ( . . . . .  ), 4 ( . . . .  ) or 
lo ( . . . . . . . .  ) 

variance componen t s  have the fol lowing expecta t ions  
in terms of  covariances be tween  collateral  relatives 

o 2 = crp 2 - Coy (FS) 

0 2 = C o v  (FS) - Cov (HS) 

a 2 = C o v  (HS) (4) 

where Cov (FS) = covar iance  of  full sibs 
Coy (HS) = covar iance of  ha l f  sibs. 

G iven  the fol lowing theoret ical  results for covari-  
ances be tween relatives in  terms of  addi t ive  genet ic  

(A0), d o m i n a n c e  (Do), epistat ic  (AoA0, etc.), ma te rna l  
genetic (AM, DM, AoAM) and  mate rna l  env i ronm en ta l  
(EM) variances and  covar iances  ( K e m p t h o r n e  1955; 

Wi l l ham 1963). 

1 2 1 1 1 2 
Coy (vs) = T ~Ao + 7 d,o + 7 OloAo + T '~AoOo 

1 
+ 57- ~M,o + ~2oAoAo+-" 

+ - L + & ~ + . . .  

q- O'AoAM -J-- , . .  

+ O'2M 
1 

Cov (HS) = ~ -  O2Ao + 11 a2oAo 1 2 - -  "}- ~ O'AoAoAo "}- . . .  (5) 

and, knowing  that  the covar iances  wi th in  a full or ha l f  
sib fami ly  are equal  to the c o m p l e m e n t  of  (5) plus an  

Table I. Analysis of variance, including dams as a source of 
variation 

Source D.F. Mean Expected 
square mean square 

Table 2. Analysis of variance, ignoring dams as a source of 
variation 

Source D.F. Mean Expected 
source mean square 

Sires f~ = s - 1 S a2w, + k3 a 2, 
Progeny within sires fw, = n..  - s W t a 2, 
Total n..  - 1 P a 2 

ind iv idua l  env i ronmen ta l  (E0) componen t ,  it is usual  to 
equate  sire and d a m  var iance  c o m p o n e n t  es t imates  
directly to their  composi t ions ,  viz. 

[ ' ' ] 1 ~.2o + cr2oAo + 2 + . . .  e~ = 7 7 -iT ~AoAoAo 

1 [ 3 1 2 1 2 
0"2D= 7 0"Io + 0"2o + 7 0 " I o A o  + T O'AoDo + 7 0 " D o D  o 

L 

7 2 
if- ~ O'AoAoAo q- . . .  

1 

+ 4 (a2M + cr2M + aAoA~ + aE2~) ] (6) 

and to define two heritabil ity estimates 

f i2=  4~-~ 
e~ 

and  fi2 = 4 3 "2 (7) 
e~ 

of  which fi2 is the more  c o m m o n l y  used since its 
num era to r  conta ins  only  addi t ive  genet ic  componen t s  
and their  interactions.  

Sires fs = s - 1 S 0-2 + k2 0 -2 + k3 a~ 
Dams with sires fo = d. - s D a 2 + kl a~ 
Progeny within dams fw = n.. - d. W a2w 
Total n..  - 1 P a~, 

2 Ignoring dams 

If  analysis o f  var iance  is pe r fo rmed  on the data  set de- 
f ined above,  ignor ing  dams  a source of  var ia t ion ,  the 

statistical consequences  are as s u m m a r i z e d  in Tab le  2. 
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By equating expected sums of squares from Tables 1 
and 2, it is easily shown that 

6.2w~ = 6.2w + (1 - Q) 6-~ 

and 

6"1, = #I + Q 6.2 (8) 

where, using the notation of  Table 1, 

(to) 
e = l - k ,  f - - ~  w . (9) 

This use of Q will be shown (section iii) to be 
equivalent to that of equations (1) and (2). Substitu- 
tion of equations (8) into (6) leads to an expression for 
the composition of the sire ignoring dam variance com- 
ponent. 

,[ 6.2 4 -  (1 + Q) 0020 + Q 002D0 + 2 --~ 00AoAo 

Q 
z + Q 0 0 2 o D o + ( l + 7 Q  / 2 + T 00 o o T \--7--/00Ao ono +. . .  

Q (a2M + azM + aAoAM2 + azM) ] . (10) + 4 

If heritability is estimated (using a nominal R = 
0.25) from this component as 

112, = 4 6.1, 
O"p2 

4 (#2 + Q 6.2) 

4 
=s (11) 

letting fii. ni. = = mean dam family size for sire group 
di 

i and Vari (nij) = variance of  dam family sizes for sire 
group i leads to 

Q = ~ i  ( V a r i ( n i j ) + _ f i i . ( f i i . - 1 ) ) / ~ i  
�9 \ I]i. (hi.-- 1). (12) 

Equation (3) is equivalent to (12) for one sire 
group�9 For more than one sire group (12) indicates the 
method of pooling. The nature of  Q and its likely mag- 
nitude in various circumstances, is thus as discussed for 
R in equations (2) and (3), since Q = 4 R - 1 .  As Q is 
also shown in Figure 2 there is no need to repeat the 
example. 

4 Standard error ofheritability estimate 

From equation (11), it follows, if Q is known without 
error, that 

Var (1~2,) = Var (1]2) + Q2 Var (112) + 2 Q Cov (112,112) 

(13) 
so that Var (la20 may or may not exceed Var (la 2) de- 
pending on the sign of  Cov ~,l~2S, 112XO) and its magnitude 
relative to Var (t]2). It is of  some interest to determine 
whether there are cases when ^2 hs, would be preferred to 
ta 2 from the point of view of precision. The methods 
developed by Osborne and Paterson (1952) can be used 
to extend expressions for the sampling variances of  112 
and 112, to Covq~ 2 la 2~ t s, DJ and hence using (13) to 
Var(l~0.  A summary of these results is given in 
Table 3, each result being of the general form 

its numerator is seen from (10) to contain various non- 
additive and maternal contributions to an extent de- 
pendent on the magnitude of Q. Using a computed R 
to "correct" 112, for bias (using 112 = 1121/4R ) is clearly 
only appropriate in cases where 002A o can be assumed to 
be the sole significant component of 6.s21. There is evi- 
dence in cattle (for example Hohenboken and Brinks 
1973) that non additive and maternal contributions 
cannot always be ignored, but the situation in sheep 
has not been investigated. 

3 Magnitude of Q 

If (9) is rewritten as 

. 

�9 \ n i . /  
Q = I  

n . . - - s  

( ~ n i 2 j ' ) / i ~  
= 1 ( n i . -  1) 

~ i \  hi. 

1 
cq Var (~0i) (14) 

0 ~ i 

where ~0i are mean squares and o~ i the coefficients de- 
fined in Table 3. In deriving these results, the usual as- 
sumptions of  mean squares independent, but compo- 
nents correlated, are involved. Also high order terms 
are neglected in expressions such as 

1 
Var ~ V/---T 

�9 [~2 Vat (X) + ,~2 Var Y -  2 X Y Cov (X, Y)] 

an approximation which holds provided the coefficient 
of variation of Y is small. 

In application, the expression 

2(o? 
Var (~0i) = (15) 

f~+2 

developed by Fisher (1928) is used in conjunction with 
(14). 
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Table 3. Sampling variances and covariances of heritability estimates expressed as linear functions of variances of mean squares 
4 - 4k2 

S, D, W, and W I, as defined in Tables 1 and 2. For brevity, the following functions of k values are defined: a = k-33' b = kl k~--3-' 

4 4 , k , )  ( , k , k )  
4 ( k 2 - k , )  d = 0 ,  e =  ~-1 ~ y klk3 k, klk3 c = kl k) ' k7 '  f =  , x = , . . . .  , z = 1 - - - +  , these quantities being coefficients 

in equations defining relevant components as functions of mean squares, viz.: 4 ~ = a S + b D + cW, 4 d-~ = d S + e D + fW, 
&~= xS + yD + z W , =  xS + ( 1 -  x) W l , 4  d~,= a S -  aWI 

Constant Coefficients of linear function of variances of mean squares 
multiplier 

Vat (S) Var (D) Vat (W) Var (W I) 

1 
1. Var(h~) 

l 
2. Var(hb) 

l 
3. Coy (~i, ~ )  ~7 

1 
4. Var(h~,) - -  

1 
5. Var (h~,) 

(a - x h2) 2 (b - y h2) 2 (c - z h2) 2 - 

(d - x h2) 2 (e - y hl~) 2 (f - z h2) 2 - 

(a - x h 2) (d - x h 2) (b - y h2s) (e - y h 2) (c - z h 2) (f - z h2D) - -  

[(a - x h 2) + Q (d - x h2)] 2 [(b - y h 2) + Q (e - y h2)] 2 [(c - z h 2) + Q ( f -  z h2)] 2 - 

(a -- xh2,) 2 - - ( - a  - (1 - x) h2,) 2 

Var (la~,) m a y  also be  ob ta ined  direct ly  using these  

methods ,  instead o f  subs t i tu t ing  in (13), and this ap-  

proach  leads to the express ion shown in l ine 5 o f  

Tab le  3. Lines  4 and 5 are, o f  course,  equ iva len t ,  bu t  it 

is l ine 5 which  wou ld  be  used in practice.  

C o m p a r i n g  lines 1 and 4 o f  Tab le  3 shows that :  

1. Q will inf luence  the m a g n i t u d e  o f  the d i f fe rence  
be tween  Var (t~ 2) and Var (fa2,), but  not  its sign. 

2. In the express ion  for Var (1~20, c o m p a r e d  wi th  

that  for Var (~2), the coef f ic ien t  o f  Va r (S )  will be  

smaller ,  since d < x h2;  the coef f ic ien t  o f  Var (D) will  

be larger,  since e > y h 2 ;  and the coef f ic ien t  o f  

Var (W) will be smaller ,  since f < z h 2. Since  

Vat (S) > Var (D) > Vat  (W) 

it is l ikely that  the  first inequa l i ty  will  d o m i n a t e  the  

s i tuat ion and that  Var(la20 will be smal le r  than  
Var (la2). 

A numer ica l  invest igat ion,  results o f  which  are  

summar i zed  in Fig. 3, con f i rmed  that  under  a range o f  

l ikely pract ical  condi t ions  Var (1~,) was always less 

than or  equal  to Var (t]2), and that  the increase in pre-  

cision could  be as m u c h  as a 12% lower  s tandard  error.  
Fo r  the condi t ions  invest igated,  Cov  (1~ 2, 1~ 2) was al- 

50 

4.0 
cA 
Z 
o 

,,~ 30 
z 
o 
I--- 

> 20 
N 

I0 
u_i 
u,i 

(Q) 

i;;-1"7 ............... 

I I I I 
0 0"5 1-0 1 5 20 

VARIANCE OF DAM FAMILY SIZE 
I I I I I 

0"111 0"139 0-167 0"194. 0"222 
Q 

(b) J 
/ 

~' �9176176149176176 
f ~176149 #r176 �9176 

@I ~ �9176149176 
@#~ ~176149 

~176 
I ~ 

i ~176176 ~149176 
/ .- 

i ~176176 
i �9  

i . -  
i~ 

/ /  

I 2 3 4. 
MEAN DAM FAMILY SIZE 

l I I I 

0 0"111 0"222 0"333 
O 

I 

04.~ 

Fig. 3 a, b. Percentage decrease in stan- 
dard error comparing SE(Ia~,) and 
SE (I~+D) with SE (1~), for data on 1,000 
progeny from 100 sire families. Graph 
(a) mean dam family size = 2.0; Graph 
(b) variance of dam family size =0.0. 
- -  h 2 = 0.40, SE (la2,); . . . .  h 2 = 0.20, 
SE (1]~.,); . . . . .  h 2 = 0.40, SE (t~2s+D); 
. . . .  h 2 = 0.20, SE (fi~+D) 
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ways negative, the corresponding correlation varying 
from - 0 . 0 2  to -0 .49.  It is apparent from equation (11) 
that fi2 in effect pools the paternal and maternal half  
sib estimates in a way which is 

1. biased and 
2. not optimal in the sense of  weighting fi2 and fi2 

according to their variances and covariance. 
It is therefore of  some interest to ask how much 

better again the standard error of  an optimally pooled 
estimate would be. If fi2 and I~ 2 are unbiased estimates 
of  the same parameter, the opt imum pooled estimator 
is (following Aitken 1935) 

Conclusion 

The sire family method ignoring dams leads to slightly 
biased and reduced but not minimum variance heri- 
tability estimates, for a range of  conditions commonly 
encountered in sheep and cattle populations. Where 
additive genetic variance is the only component of  con- 
cern, use of  a computed genetic relationship in place of  
a nominal R = 0.25 is appropriate and would remove 
the "slight bias. This approach is an acceptable alter- 

~1~ + l) = 
[Var (I~) - C o v  (I~ 2, fi~)] fi2 + [Var (t] 2) - C o v  (fi2, lq 2D)] fi2 

Var (fis 2) + Var (I~D 2) -- 2 Cov (la 2, la 2) 

and its sampling variance is 

Var (l~s 2) Var (fi~) - Coy 2 (l~s 2, fi2) 

Var (fi~) + Var (fi 2) - 2 Coy (fi~, 112) " 
Var (171~,+ D) - 

Corresponding standard errors of  fiZ+D are sum- 
marized in Fig. 3, for comparison with those of  fi21 and 
I~ 2 under the same range of  conditions. It is clear that 
the standard error of  fi21 will not be as small as that of  
I~-~+D, and that the superiority of  the latter will be 
greatest at a high heritability and a high mean dam 
family size. It should be noted that while fi2+D is opti- 
mal in the sense of  minimising standard error, it will 
be biased in a similar way to Ia21 if non additive or 
maternal variances are significant. 

Example 

In an Australian Merino sheep flock a typical sire 
family would consist of  50 dam families of  mean size 
1.10 and variance 0.092 (based on 45 dam families of  
size 1 and 5 families of  size 2). In this case 

Q = [0.092 + 1.10 (0.10)]/[1.10 (55 - 1)] = 0.034 and 
R = (1 + 0.034) 0.25 = 0.2508. 

For a trait such as hogget fleece weight with a nominal 
heritability of  h2s = h 2 = 0.4, a sire family estimate of  
heritability would have the expectation 0 .4+  
(0.0034) (0.4) = 0.4014. If  non-additive and/or  mater- 
nal components were significant to the extent that 
h2/hs  2 = 2.0, a sire family estimate would have the ex- 
pectation 0.4 + 0.0034 (2.0) (0.4) = 0.4027. The sire 
family method is thus negligably biased for this type of  
flock structure. 

native to more complex methods, and has the ad- 
vantage that dam identity is not required. 
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